IR-IR DOUBLE RESONANCE EXPERIMENT OF CH₃F-(ortho-H₂)_n CLUSTERS IN SOLID para-H₂

Y. MIYAMOTO, Graduate School of Natural Science and Technology, Okayama University, 3-1-1 Tsushimanaka Okayama 700-8530 JAPAN; A. MIZOGUCHI, and <u>H. KANAMORI</u>, Department of Physics, Tokyo Institute of Technology, Tokyo, 152-8551 JAPAN.

FTIR absorption spectrum of the ν_3 vibrational band of CH₃F in solid *para*-H₂ shows a series of lines at regular intervals, which could be assigned to clusters forming CH₃F-(*ortho*-H₂)_n, with n = 0 to 12^a. However, such a distinct feature appears only in the ν_3 mode but is not observed in the other vibrational modes. In order to solve this problem, we applied IR-IR double resonance spectroscopy using 3 μ m OPO laser and 9 μ m QC laser to the vibrational bands of CH₃F in solid *para*-H₂. Because, very recently, high resolution cw-QC laser spectroscopy demonstrated a perfect bleaching effect on a spectral peak in ν_3 mode^b. By bleaching the n=1 component of the ν_3 band at 9 μ m, we can see a corresponding depletion in the broad spectral feature of the ν_1 band at 3 μ m. This simultaneous disappearance of the spectral peaks is a proof of the CH₃F-(*ortho*-H₂)_n cluster model, and it suggests that all the vibrational bands should be explained by the same model.

^aK. Yoshioka and D. T. Anderson, J. Chem. Phys. <u>119</u>, 4731(2003)

^bA. R. W. McKellar, A. Mizoguchi, and H. Kanamori, *Phys. Chem. Chem. Phys.*, <u>13</u>, 11587 (2011)