DIRECT POTENTIAL FITTING FOR THE $A^{3}\Pi_{1u}$ and $X^{1}\Sigma_{q}^{+}$ STATES OF Br₂

<u>TOKIO YUKIYA</u>, NOBUO NISHIMIYA, MASAO SUZUKI, Department of Electronics and Information Technology, Tokyo Polytechnic University, Iiyama 1583, Atsugi City, Kanagawa 243-0297, Japan; ROBERT J. LE ROY, Department of Chemistry, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada.

Bromine dimer has been studied by many researchers in various wavelength regions. The $A^3\Pi_{1u}$ and $X^1\Sigma_g^+$ states have been well observed using magnetic rotation spectroscopy,^{*a*} by laser-induced fluorescence,^{*b,c*} by laser absorption,^{*d*} by Fourier transform absorption,^{*e*} and by UV emission.^{*f*} This yields a data set consisting of 16916 transitions in which the observed vibrational levels for the $X^1\Sigma_g^+$ and $A^3\Pi_{1u}$ states span 83% and 99% of the potential well depths, respectively, with the highest observed vibrational level of the $A^3\Pi_{1u}$ state lying only 2 cm⁻¹ below the dissociation limit.^{*a*} In order to provide the most compact and comprehensive description of these data, and the ability to make reliable predictions outside their range, we have chosen to perform a "direct potential fit" (DPF), rather than a conventional Dunham-expansion analysis. In particular, accurate analytic potential energy functions for the $A^3\Pi_{1u}$ and $X^1\Sigma_g^+$ states are determined from a combined-isotopologue DPF analysis that also yields the electronic isotope shift, the Ω -doubling radial strength function, and an experimental value for the long-range inverse-power C_5 constant of the $A^3\Pi_{1u}$ state, as well as centrifugal Born-Oppenheimer Breakdown (BOB) functions for both states. To reveal characteristics of the $A^3\Pi_{1u}$ state, band constants calculated from these potentials are compared with those determined from a conventional parameter-fitting analysis reported by Coxon.^{*g*}

^b C. Focsa et al., J. Mol. Spectrosc. 200, 104 (2000).

- ^e S. Gerstenkorn et al., J. Physique, 48, 1685 (1987).
- ^f P. Venkateswarlu et al., J. Mol. Spectrosc. 96, 247 (1982).
- ^g J. A. Coxon, J. Mol. Spectrosc. 41, 548 (1972).

^a C. D. Boone, PhD Thesis, University of British Columbia (1999).

^c D. J. Postell et al., to be published.

^d N. Nishimiya el al., Columbus Meeting, paper WH02 (2005).