CAVITY RINGDOWN ABSORPTION SPECTRUM OF THE $T_1(n, \pi^*) \leftarrow S_0$ TRANSITION OF ACROLEIN: ANALYSIS OF THE 0_0^0 BAND ROTATIONAL CONTOUR

NIKOLAUS C. HLAVACEK, MICHAEL O. MCANALLY, and STEPHEN DRUCKER, Department of Chemistry, University of Wisconsin-Eau Claire, Eau Claire, WI 54702.

Acrolein (propenal, CH₂=CH—CH=O) is the simplest conjugated enal molecule and serves as a prototype for investigating the photochemical properties of larger enals and enones. Acrolein has a coplanar arrangement of heavy atoms in its ground electronic state. Much of the photochemistry is mediated by the $T_1(\pi, \pi^*)$ state, which has a CH₂-twisted equilibrium structure. In solution, the $T_1(\pi, \pi^*)$ state is typically accessed via intersystem crossing from an initially prepared planar $S_1(n, \pi^*)$ state. An intermediate in this photophysical transformation is the lowest ${}^3(n, \pi^*)$ state, a planar species with adiabatic excitation energy below S_1 and above $T_1(\pi, \pi^*)$. The present work focuses on this ${}^3(n, \pi^*)$ intermediate state; it is designated $T_1(n, \pi^*)$ as the lowest-energy triplet state of acrolein having a planar equilibrium structure.

The $T_1(n, \pi^*) \leftarrow S_0$ band system, with origin near 412 nm, was first recorded in the 1970s at medium (0.5 cm^{-1}) resolution using a long-path absorption cell. Here we report the cavity ringdown spectrum of the 0_0^0 band, recorded using a pulsed dye laser with 0.1 cm⁻¹ spectral bandwidth. The spectrum was measured under both bulk-gas (room-temperature) and jet-cooled conditions. The band contour in each spectrum was analyzed by using a computer program developed^{*a*} for simulating and fitting the rotational structure of singlet-triplet transitions. The assignment of several resolved sub-band heads in the room-temperature spectrum permitted approximate fitting of the inertial constants for the $T_1(n, \pi^*)$ state. The determined values (cm⁻¹) are A = 1.662, B = 0.1485, C = 0.1363. For the parameters A and (B+C)/2, estimated uncertainties of ± 0.003 cm⁻¹ and ± 0.0004 cm⁻¹, respectively, correspond to a range of values that produce qualitatively satisfactory global agreement with the observed room-temperature contour. The fitted inertial constants were used to simulate the rotational contour of the 0_0^0 band under jet-cooled conditions. Agreement with the observed jet-cooled spectrum was optimized by varying the homogeneous linewidth of the rovibronic transitions as well as the rotational temperature. The optimal FWHM was about 0.20 cm⁻¹, leading to an estimate of 25 ps for the lifetime of the $T_1(n, \pi^*)$ state of acrolein (v = 0) under isolated-molecule conditions.

^aR. H. Judge et al., J. Chem. Phys. 103, 5343 (1995).