A STUDY OF NbMo AND NbMo BY ANION PHOTOELECTRON SPECTROSCOPY

<u>PRAVEENKUMAR BOOPALACHANDRAN</u>, SRIJAY S. RAJAN, MELISSA A. BAUDHUIN, and DOREEN G. LEOPOLD, *Department of Chemistry, University of Minnesota, Minneapolis, MN 55455*.

We report the 488 and 514 nm anion photoelectron spectra of NbMo $^-$. R2PI spectroscopic studies have established that neutral NbMo has a $^2\Delta_{5/2}$ ground state and a short bond length a . We find that the NbMo $^-$ anion has a $^1\Sigma^+$ ground state in which the "extra" electron occupies the $(4\text{d})\delta$ bonding orbital, giving a $1\sigma^21\pi^41\delta^42\sigma^2$ valence electron configuration. Thus, NbMo $^-$ has a formal bond order of 6, and is isoelectronic with Mo $_2$. Low-lying excited states of NbMo ($^2\Sigma^+$) and NbMo $^-$ ($^3\Delta$) are also observed. The spectra provide the electron affinity of NbMo, energies of the $^2\Sigma^+$ and $^3\Delta$ excited states, vibrational frequencies in the anion and neutral molecule ground states and the $^2\Sigma^+$ state, $^2\Delta$ and $^3\Delta$ spin-orbit splittings, and (from Franck-Condon analyses) bond length measurements for the anion ground state and the observed excited states. These results are compared with previous anion photoelectron spectroscopic data for the Group 5/6 congeners VCr and VMo, and with density functional theory predictions.

^aR. Nagarajan and M. D. Morse, J. Chem. Phys. 127, 164305 (2007).