THE OPTICAL STARK SPECTRUM OF THE $[11.9]\Omega=3/2-X^3\Pi_{3/2}$ BAND SYSTEM OF PLATINUM MONOFLUORIDE, PtF

CHENGBING QIN AND TIMOTHY C. STEIMLE, Department of Chemistry and Biochemistry, Arizona State University, Tempe, AZ 85287.

Recently the O'Brien group^{*a*} reported on the field-free detection and analysis of the $[11.9] = 3/2 - X^2 \Pi_{3/2}$ band system of PtF using intracavity laser absorption. The hollow cathode condition limited the spectral resolution, which was insufficient to fully resolved the hyperfine splitting of ¹⁹⁵Pt (I=1/2) and ¹⁹F (I=1/2). Here we report laser-induced fluorescence spectra of the 1-0 and 0-0 bands of the $[11.9] = 3/2 - X^2 \Pi_{3/2}$ transition of PtF, obtained at near natural linewidth resolution (FWHM 40MHz) using supersonic molecular beam techniques. The spectra show a complex, clerally resolved hyperfine structure which has significant contributions from magnetic term in ¹⁹⁵Pt and ¹⁹F. The spectra of ¹⁹⁴PtF, ¹⁹⁵PtF, ¹⁹⁶PtF, ¹⁹⁸PtF isotopogue shave been assigned and analyzed. The electric field induced dependence of the R(1.5) branch of the ¹⁹⁵PtF isotopogue was analyzed to produce permanent electric dipole moment, μ , of 3.45 D and 2.32 D for the $X^2 \Pi_{3/2}$ and $[11.9]\Omega = 3/2$ states, respectively. A comparision with Ab Initio prediction^{*b*, *c*} will be given.

^aK.G. Handler, R.A. Harris, L.C. O'Brien and J.J.O'Brien J.Mol. Spectrosc. 265 39, 2011.

^bW. Liu and R. Franke J. Comput. Chem. 23 564, 2001.

^cW. Zou, Y. Liu and J. E. Boggs Dalton Transactions, 39 2023, 2000