ANALYSIS OF OH^+ , H_2O^+ , AND H_3^+ IN A DIFFUSE MOLECULAR CLOUD TOWARD W51

<u>NICK INDRIOLO</u>, DAVID A. NEUFELD, Department of Physics & Astronomy, Johns Hopkins University, Baltimore, MD 21218; MARYVONNE GERIN, LERMA, CNRS UMR 8112, 24 rue Lhomond, 75231 Paris Cedex 05, France; THOMAS R. GEBALLE, Gemini Observatory, Hilo, HI 96720.

Absorption lines from the molecules OH^+ , H_2O^+ , and H_3^+ have all been observed in a diffuse molecular cloud along a line of sight near W51 IRS2. We present the first chemical analysis that combines the information provided by all three of these species. Together, OH^+ and H_2O^+ are used to determine the molecular hydrogen fraction (f_{H_2}) in the outskirts of the observed cloud, as well as the product of the cosmic-ray ionization rate of atomic hydrogen and an efficiency factor ($\epsilon\zeta_H$). The efficiency factor (ϵ) describes what fraction of the time ionization of H by cosmic rays eventually leads to OH^+ . H_3^+ is used to infer the cosmic-ray ionization rate of H_2 (ζ_2) in the molecular interior of the cloud. By demanding that the two ionization rates are equal, and taking the value inferred from H_3^+ to be correct, we determine ϵ . This is an important step in the future use of OH^+ and H_2O^+ on their own as tracers of the cosmic-ray ionization rate.