EXOMOL: MOLECULAR LINE LISTS FOR ASTROPHYSICAL APPLICATIONS. A THEORETICAL LINE LIST FOR NICKEL HYDRIDE.

S. N. YURCHENKO, <u>L. LODI</u>, A. KERRIDGE and J. TENNYSON, *University College London, Department of Physics and Astronomy, London WC1E 6BT, UK.*

Exomol (www.exomol.com) is a database of molecular line lists which can be used for spectral characterisation and simulation of astrophysical environments such as exoplanets, brown dwarfs, cool stars and sunspots^a. New line lists for about 30 small molecules of astrophysical interest which currently lack a complete spectroscopic coverage are being generated. The list includes diatomics (e.g., C₂, O₂, AlO), triatomics (e.g., H₂S, C₃, SO₂), tetratomics (e.g., PH₃, HOOH, H₂CO) and a few larger molecules (most notably CH₄ and HNO₃). We report progress on a new theoretical line list for nickel hydride NiH. The spectra of transition-metal hydrides such as NiH are very complicated due to the large-number of low-lying electronic states, to the importance of correlation, relativistic and spin-orbit effects and of the various couplings between angular momenta. In our study potential energy curves and the relevant couplings were computed *ab initio* and the corresponding coupled-surface ro-vibronic problem was solved using an expansion in Hund's case (a) wave functions. Potential curves and couplings were then refined semi-empirically using the available experimental spectroscopic data ^b.

^aJ. Tennyson and S. N. Yurchenko, Mon. Not. R. Astron. Soc. (submitted)

^b Vallon R., S.H. Ashworth, P. Crozet, R.W. Field, D. Forthomme, H. Harker, C. Richard and A.J. Ross, J. Chem. Phys. A 113, 13159-13166 (2009)