STRUCTURES AND SPECTROSCOPIC PROPERTIES CALCULATED FOR $C_6H_7^+$ AND ITS COMPLEXES WITH Ne, Ar, N₂, OR CO₂

<u>P. BOTSCHWINA</u> and R. OSWALD, *Institute of Physical Chemistry, University of Göttingen, Tammannstr.* 6, D-37077 Göttingen, Germany.

Explicitly correlated coupled cluster theory at the CCSD(T)-F12x (x = a, b) level^{*a*} in conjunction with the double-hybrid density functional B2PLYP-D^{*b*} has been employed in a study of the benzenium ion ($C_6H_7^+$) and its complexes with simple ligands (L = Ne, Ar, N₂, or CO₂).^{*c*} The ground-state rotational constants of $C_6H_7^+$ are predicted to be A₀ = 5445 MHz, B₀ = 5313 MHz, and C₀ = 2731 MHz. For the complexes with L = Ne, Ar or N₂, the energetically most favourable structure is of π -bonded type, but for the most strongly bound complex $C_6H_7^+ \cdot CO_2$ a conformer with the CO₂ ligand lying in the ring-plane of the $C_6H_7^+$ moiety is slightly lower in energy.

^aT. B. Adler, G. Knizia, and H.-J. Werner, J. Chem. Phys. <u>127</u>, 221106 (2007);

G. Knizia, T. B. Adler, and H.-J. Werner, J. Chem. Phys. 130, 054104 (2009).

^bT. Schwabe and S. Grimme, *Phys. Chem. Chem. Phys.* <u>9</u>, 3397 (2007).

^cP. Botschwina and R. Oswald, J. Phys. Chem. A <u>115</u>, 13664 (2011);

P. Botschwina and R. Oswald, J. Chem. Phys. submitted.