MICROWAVE SPECTRUM AND GEOMETRY OF H₃P···AgI

<u>N. R. WALKER</u>, S. L. STEPHENS, W. MIZUKAMI, D. P. TEW AND A. C. LEGON, *School of Chemistry*, *University of Bristol, Bristol, BS8 1TS, U.K.*.

The pure rotational spectrum of the vibrational ground state of $H_3P\cdots AgI$ has been measured by chirped-pulse FTMW spectroscopy. The complex is generated via laser ablation (532 nm) of a silver rod in the presence of CF₃I, PH₃ and argon. It is subsequently stabilized and interrogated in the cold environment of a supersonic jet. The rotational constant, B_0 , and the centrifugal distortion constant, D_J , have been measured for $H_3P\cdots^{107}AgI$ and $H_3P\cdots^{109}AgI$. The spectrum of the complex is consistent with a C_{3v} geometry and a linear arrangement of the P, Ag and C atoms. The measured rotational constants allow a preliminary determination of the geometry of the molecule. The nuclear quadrupole coupling constant of the iodine atom, $\chi_{aa}(I)$, is also established. The experimental results are compared with theory performed at the explicitly-correlated coupled-cluster singles, doubles and perturbative triples level.