MICROWAVE SPECTRA AND GEOMETRIES OF $H_2C_2\cdots AgCl$ AND $H_2C_2\cdots CuCl$

<u>N. R. WALKER</u>, S. L. STEPHENS, W. MIZUKAMI, D. P. TEW AND A. C. LEGON, School of Chemistry, University of Bristol, Bristol, BS8 1TS, U.K..

Pure rotational spectra of the vibrational ground states of $H_2C_2\cdots AgCl$ and $H_2C_2\cdots CuCl$ have been measured by chirped-pulse FTMW spectroscopy. Each complex is generated via laser ablation of the metal in the presence of small percentages of CCl₄ and C₂H₂ in argon. The complexes are stabilized and interrogated in the cold environment of a supersonic jet. Rotational constants (B_0 , C_0) and the centrifugal distortion constant, Δ_J , have been measured for six isotopologues of $H_2C_2\cdots AgCl$ and three isotopologues of $H_2C_2\cdots CuCl$ with substitutions at the metal, chlorine and carbon atoms in each case. The spectrum of each complex is consistent with a C_{2v} structure in which the metal atom is coordinated by the π -orbital of ethyne. The measured rotational constants allow determination of the length of the bond between the metal and chlorine atoms, r(M-Cl), and the distance between the metal atom in each complex and also for copper in $H_2C_2\cdots CuCl$.