The rotational spectra of three isotopologues of H$_2$S···ICF$_3$ and four isotopologues of H$_2$O···ICF$_3$ have been measured between 7 and 18.5 GHz by chirped-pulse Fourier transform microwave spectroscopy. The rotational constant, B_0, the centrifugal distortion constants, D_J and D_{JK}, and the nuclear quadrupole coupling constant of 127I, $\chi_{aa}(I)$, are precisely determined for H$_2$S···ICF$_3$ and H$_2$O···ICF$_3$ by fitting observed transitions to the Hamiltonians appropriate to symmetric tops. The measured rotational constants allow determination of the molecular geometries. The C_2 axis of H$_2$O / H$_2$S intersects the C_3 axis of the CF$_3$I sub-unit at the oxygen atom. The r_0 lengths of halogen bonds identified between iodine and sulphur, $r(S···I)$, and iodine and oxygen, $r(O···I)$, are determined to be 3.5589(2) Å and 3.0517(18) Å respectively. The angle, ϕ, between the local C_2 axis of the H$_2$S / H$_2$O sub-unit and the C_3 axis of CF$_3$I is found to be 93.7(2)$^\circ$ in H$_2$S···ICF$_3$ and 34.4(20)$^\circ$ in H$_2$O···ICF$_3$. The observed symmetric top spectra imply nearly free internal precession of the C_2 axis of the hydrogen sulphide/water unit about the C_3 axis of CF$_3$I in each of these complexes. Additional transitions of H$_2^{16}$O···ICF$_3$, D$_2^{16}$O···ICF$_3$ and H$_2^{18}$O···ICF$_3$ can only be assigned using Hamiltonians appropriate to asymmetric tops, suggesting that the effective rigid-rotor fits employed do not completely represent the internal dynamics of H$_2$O···ICF$_3$.