MODERATE RESOLUTION JET COOLED CAVITY RINGDOWN SPECTRA OF THE \tilde{A} STATE OF NO$_3$ RADICAL

TERRANCE J. CODD, MING-WEI CHEN*, MOURAD ROUDJANE and TERRY A. MILLER, Laser Spectroscopy Facility, The Ohio State University, Columbus, Ohio 43210.

The \tilde{A}-\tilde{X} spectrum of NO$_3$ has been previously observed using cavity ringdown spectroscopy (CRDS) by Andrei Deev et al under ambient conditions.a There the authors assigned a number of vibronic bands in the spectrum. However, under these conditions, hot-bands may be present and the spectrum becomes very congested at frequencies higher than \sim8700 cm$^{-1}$ due to the density of vibronic states and the overlap of their rotational contours. In order to obtain more information about the \tilde{A} state of NO$_3$ we recently obtained spectra from 7550 cm$^{-1}$ to over 10000 cm$^{-1}$ using our moderate resolution (\simeq 0.05 cm$^{-1}$) jet cooled CRDS apparatus. Jet cooling in our apparatus reduces the rotational temperature to <30 K and eliminates vibrational hot bands greatly simplifying the spectrum. We are able to resolve and assign more than 15 vibronic features including a new assignment of the $3_{0}'$ band. Analysis of the ν_4 progression shows weak Jahn-Teller coupling in this mode. Anomalous band contours and anharmonic spacings are observed for the $\nu_1\nu_4$ combination bands and the cause is being investigated. We also see some features that could belong to vibronically forbidden transitions which may be magnetic dipole allowed.

apresent address: University of Illinois at Urbana-Champaign, Urbana, IL 61801