VIBRATIONAL CORRECTIONS TO MOLECULAR PROPERTIES:
SECOND-ORDER VIBRATIONAL PERTURBATION THEORY VS VARIATIONAL COMPUTATIONS

MICHAEL E. HARDING, JUANA VÁZQUEZ, JOHN F. STANTON, Institute for Theoretical Chemistry, Department of Chemistry and Biochemistry, University of Texas at Austin, Austin, TX 78712, USA; GREGOR DIEZEMANN, and JÜRGEN GAUSS, Institut für Physikalische Chemie, Universität Mainz, Jakob-Welder-Weg 11, D-55128 Mainz, Germany.

For a small set of linear and non-linear molecules, a detailed comparison of two different procedures for predicting vibrationally averaged molecular properties, i.e., second-order vibrational perturbation theory (VPT2) and a variational approach, is carried out. Results for vibrational corrections to dipole and quadrupole moments, nuclear quadrupole moments, static electric-dipole polarizabilities, NMR chemical shielding tensors, nuclear spin-rotation tensors, magnetizabilities, and rotational g-tensors are reported.