Glycine is the smallest amino acid, and therefore it is of special interest as a model and starting point for theoretical and experimental studies. Whereas the crystalline form of glycine consists of zwitterions $NH_3^+ - CH_2 - COO^-$, gas phase glycine is known to exist in the nonionized form $NH_2 - CH_2 - COOH$. The interaction between glycine and water has been widely studied using a large variety of theoretical methods. Depending on the theoretical level used, a stabilisation of the zwitterionic form is predicted for complexes containing from 2 to 7 water molecules. In low-temperature Ar matrices a set of characteristic IR absorption bands for the zwitterionic form has been observed. The higher stoichiometry complexes (glycine)$\cdot\cdot\cdot$(H$_2$O)$_n$ with n larger than 3 are demonstrated to be zwitterionic H-bonded complexes. The multitude of conformations expected for these glycine-water complexes makes a combination of low temperature and high resolution spectroscopy essential. We want to use the advantages of our experiment to investigate glycine and its complexes with water in helium-nanodroplets at ultracold temperatures in the range from 3000-3800 cm$^{-1}$. Our measurements were carried out using a high power IR-OPO (cw: 2.7 W) as radiation source and a helium nanodroplet spectrometer. Helium-nanodroplets are formed by expansion of helium at 55 bar through a 5 μm nozzle which is kept at a temperature of 16 K. The status of the project is presented.
