PHOTODISSOCIATION DYNAMICS OF A TRIATOMIC PSEUDO-DIHALIDE: ABSORPTION CROSS SECTION AND DYNAMICS OF SOLVATED ICN$^-$

JOSHUA P. MARTIN, QUANLI GUa, JOSHUA P. DARRb, JILA, Department of Chemistry and Biochemistry, University of Colorado at Boulder, Boulder, CO 80309; ANNE B. McCOY, Department of Chemistry, The Ohio State University, Columbus, OH 43210; and W. CARL LINEBERGER, JILA, Department of Chemistry and Biochemistry, University of Colorado at Boulder, Boulder, CO 80309.

We report the photoabsorption cross section and photoproduct branching ratios of mass-selected bare ICN$^-$ and ICN$^-$(CO$_2$) following excitation to the A' $^2\Pi_{1/2}$ electronic excited state. Previous studies of CO$_2$ solvated-heteronuclear dihalides, IX$^-$(CO$_2$)$_n$ (X=Cl, Br), reported three excited state selective classes of photoproducts: I$^-$, X$^-$, and IX$^-$ based clusters. Photoabsorption of bare ICl$^-$ and IBr$^-$ that leads to population in the A' $^2\Pi_{1/2}$ state have maxima near 680 nm and 740 nm, respectively, and result in I$^-$ photoproducts exclusively over the entire band corresponding to A' $^2\Pi_{1/2} \leftarrow X^2\Sigma_{1/2}$ excitation. Interestingly, following excitation of bare ICN$^-$ to the comparable state (430-650 nm, maximum at 490 nm), I$^-$ is the dominant ionic photoproduct, but CN$^-$ photoproducts are observed as well. When a single CO$_2$ solvent molecule is added to ICN$^-$, the same A' $^2\Pi_{1/2} \leftarrow X^2\Sigma_{1/2}$ excitation results in apparent charge transfer within the complex. Therefore, the observed ionic photoproducts are not just the expected I$^-$ and I$^-$(CO$_2$), but CN$^-$ and solvated CN$^-$(CO$_2$) photoproducts are also significant products. Analysis of the experimental results using calculated potential energy curves of ICN$^-$ reveals intriguing dynamics of the photoexcited triatomic pseudo-dihalide. Supported by NSF and AFOSR.

aPresent address: Department of Chemistry, University of Virginia, Charlottesville, VA 22904

bPresent address: Department of Chemistry, University of Nebraska, Omaha, NE 68182