PHOTODISSOCIATION DYNAMICS OF A TRIATOMIC PSEUDO-DIHALIDE: ABSORPTION CROSS SECTION AND DYNAMICS OF SOLVATED $\rm ICN^-$

JOSHUA P. MARTIN, QUANLI GU^a, JOSHUA P. DARR^b, JILA, Department of Chemistry and Biochemistry University of Colorado at Boulder, Boulder, CO 80309; ANNE B. McCOY, Department of Chemistry, The Ohio State University, Columbus, OH 43210; and W. CARL LINEBERGER, JILA, Department of Chemistry and Biochemistry, University of Colorado at Boulder, Boulder, CO 80309.

We report the photoabsorption cross section and photoproduct branching ratios of mass-selected bare ICN^- and $ICN^-(CO_2)$ following excitation to the $A' \, {}^2\Pi_{1/2}$ electronic excited state. Previous studies of CO₂ solvated-heteronuclear dihalides, $IX^-(CO_2)_n$ (X=Cl, Br), reported three excited state selective classes of photoproducts: I^- , X^- , and IX^- based clusters. Photoabsorption of bare ICl^- and IBr^- that leads to population in the $A' \, {}^2\Pi_{1/2}$ state have maxima near 680 nm and 740 nm, respectively, and result in I^- photoproducts exclusively over the entire band corresponding to $A' \, {}^2\Pi_{1/2} \leftarrow X^2 \Sigma_{1/2}$ excitation. Interestingly, following excitation of bare ICN^- to the comparable state (430-650 nm, maximum at 490 nm), I^- is the dominant ionic photoproduct, but CN^- photoproducts are observed as well. When a single CO₂ solvent molecule is added to ICN^- , the same $A' \, {}^2\Pi_{1/2} \leftarrow X^2 \Sigma_{1/2}$ excitation results in apparent charge transfer within the complex. Therefore, the observed ionic photoproducts are not just the expected I^- and $I^-(CO_2)$, but CN^- and solvated $CN^-(CO_2)$ photoproducts are also significant products. Analysis of the experimental results using calculated potential energy curves of ICN^- reveals intriguing dynamics of the photoexcited triatomic pseudo-dihalide. Supported by NSF and AFOSR.

^aPresent address: Department of Chemistry, University of Virginia, Charlottesville, VA 22904

^bPresent address: Department of Chemistry, University of Nebraska, Omaha, NE 68182