CAVITY RINGDOWN SPECTROSCOPY AND KINETICS OF HO₂+HCHO: DETECTION OF THE ν_1 AND \tilde{A} - \tilde{X} BANDS OF HOCH₂OO

<u>MATTHEW K. SPRAGUE</u>^a, MITCHIO OKUMURA, California Institute of Technology, Division of Chemistry, MC 127-72, Pasadena, CA 91125; and STANLEY P. SANDER, Jet Propulsion Laboratory, California Institute of Technology, MS 183-901, Pasadena, CA 91109.

The reactions of HO₂ with carbonyl compounds are believed to be a sink for carbonyl compounds in the upper troposphere and lower stratosphere. These reactions proceed through a hydrogen bound intermediate before isomerizing.^b The reaction of HO₂ + formaldehyde (HCHO) serves as a prototype for this class of reactions, forming the isomerization product hydroxymethylperoxy (HOCH₂OO, HMP). Previous studies measured the spectrum and kinetics of HMP using either FTIR detection of the end products^c or direct detection of HMP by the unstructured \tilde{B} - \tilde{X} transition.^{d,e} Despite these studies, considerable uncertainty exists in the rate constant of HMP formation (80%, 2σ).^f

In this talk, we report the first detection of the ν_1 (OH stretch) and $\tilde{A}-\tilde{X}$ electronic spectra of the HMP radical. The OH stretch spectrum is broad and featureless, while the $\tilde{A}(0)-\tilde{X}(0)$ origin and combination band with the OOCO torsion $\tilde{A}(n_{OOCO}=1)-\tilde{X}(0)$ are rotationally resolved. Quantum chemistry calculations have been performed on both the \tilde{A} and \tilde{X} states as a function of the OOCO and HOCO dihedral angles to estimate the $\tilde{A}-\tilde{X}$ transition frequency and to assess the coupling between the two torsional modes. We also present kinetics data showing the rates of production and destruction of HMP.

^aSupport from the NDSEG Fellowship, California Air Resources Board Contracts 03-333 and 07-730, and NASA Upper Atmosphere Research Program Grants NAG5-11657, NNG06GD88G and NNX09AE21G are gratefully acknowledged

- ^eJ. P. Burrows, G. K. Moortgat, G. S. Tyndall, R. A. Cox, M. E. Jenkin, G. D. Hayman, and B. Veyret J. Phys. Chem. 1989, 93, 2375
- ^fS. P. Sander, B. J. Finlayson-Pitts, D. M. Golden, R. E. Huie, C. E. Kolb, M. J. Kurylo, M. J. Molina, *et al. Chemical Kinetics and Photochemical Data for Use in Atmospheric Studies, Evaluation Number 16*, Jet Propulsion Laboratory, 2009

^bI. Hermans, J. F. Muller, T. L. Nguyen, P. A. Jacobs, and J. Peeters. J. Phys. Chem. A 2005, 109, 4303.

^cF. Su, J. G. Calvert, and J. H. Shaw J. Phys. Chem. **1979**, 83, 3185.

^dB. Veyret, R. Lesclaux, M. T. Rayez, J. C. Rayez, R. A. Cox, and G. K. Moortgat J. Phys. Chem. 1989, 93, 2368.