Motivated by the ongoing search for the CP-violating electron electric dipole moment (e-EDM), rotational spectra of the radicals $^{207}\text{Pb}^{19}\text{F}$ and $^{208}\text{Pb}^{19}\text{F}$ were measured using a supersonic jet Fourier transform microwave spectrometer. Zeeman splitting was examined for $^{10}\text{Pb}^{19}\text{F}$ and $^{9}\text{Pb}^{19}\text{F}$ $J = 1/2$ and $J = 3/2$ transitions using three pairs of Helmholtz coils capable of generating magnetic fields up to ~ 4 Gauss. Transitions were observed with 0.5 kHz accuracy over a range of $2 - 26.5$ GHz. Zeeman splittings as small as 6 kHz were able to be resolved. The observation of these field dependent spectra allowed for the determination of the two body-fixed g-factors, G_{\parallel} and G_{\perp}, of the electronic wave function. The final values obtained compare reasonably well with recently calculated values and will be reported at the meeting. The precise determination of the body fixed g-factors is an important step in a possible future e-EDM experiment using either the $^{207}\text{Pb}^{19}\text{F}$ or $^{208}\text{Pb}^{19}\text{F}$ molecule.

Acknowledgments: Work at Brookhaven National Laboratory was carried out under Contract No. DE-AC02-98CH10886 with the U.S. Department of Energy and supported by its Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences and Biosciences. Work by N. E. Shafer-Ray was performed with support from the National Science Foundation award NSF-0855431. J.-U. Grabow acknowledges funding from the Deutsche Forschungsgemeinschaft and the Land Niedersachsen. RJM and ALB appreciate the support of a Sontag Research Fellowship from Pomona College.

Current Address: Chemistry Department, Brookhaven National Laboratory, Upton, NY 11973