MILLIMETERWAVE SPECTROSCOPY OF THE INTERNAL ROTATION BANDS OF Ne-DCN

NAOKO OYAMADA, <u>KENSUKE HARADA</u>, and KEIICHI TANAKA, *Department of Chemistry, Faculty of Science, Kyushu University, Hakozaki, Higashiku, Fukuoka, 812-8581 JAPAN*.

In 2005, a we reported the MMW specrtum of internal rotation bands (j=1-0 and 2-1) of Ne-HCN to analyzed the intermolecular potential energy surface (PES) between Ne and HCN, where j denotes the quantum number for the HCN internal rotation. In the present study, we have extended our observation to the Ne-DCN deuterated complex in the MMW region (78-175 GHz), and assigned the several DCN internal rotation bands such as the j=1-0 fundamental band (Σ_1 - Σ_0 and Π_1 - Σ_0) and the j=2-1 hot band (Σ_2 - Σ_1 , Π_2 - Π_1 , and Δ_2 - Π_1) for the 20 Ne-DCN and 22 Ne-DCN complexes. In total, 69 and 12 lines have been assigned to the 20 Ne-DCN and 22 Ne-DCN. The intermolecular stretch band between Ne and DCN, however, was not observed in this frequency region. Analysis shows that the Σ_1 and Π_1 sublevels for j=1 state are located at 134 and 105 GHz, respectively, above the j=0 ground state (Σ_0), while the Σ_2 , Π_2 , and Δ_2 sublevels of j=2 state are located at 286, 276, and 257 GHz with different order from that for the normal species.

The observed MMW frequencies for Ne-DCN were analyzed with two dimensional $(\theta - R)$ PES freezing the freedom in DCN moiety. The PES given by CCSD(T) level *ab initio* calculation^b was modified by adding sixteen extra parameters and fitted to the observed frequencies of internal rotation bands of both ²⁰Ne and ²²Ne species. The $(\theta - R)$ PES thus fitted has a global minimum in the linear configuration $(\text{Ne}\cdots\text{D-C-N})$ with a well depth of 64.1 cm⁻¹, and a saddle point located in the anti-linear configuration $(\text{D-C-N}\cdots\text{Ne})$ by 18.4 cm⁻¹ higher than the global minimum. The j=0 ground vibrational state is located by 4.8 cm⁻¹ higher than the saddle point. The PES is anisotropic because the center-of-mass distance between Ne and DCN changes much along the minimum energy path, 4.230, 3.477, and 4.020 Å in the linear, T-shaped, and anti-linear forms, together with their energies. The PES estimated for Ne-DCN is very similar to that of Ne-HCN, but the global minimum is by 1.1 cm⁻¹ deeper than that of Ne-HCN, due to the frozen model of the HCN/DCN moiety and also our observation is quite limited to the bottom of PES, e.g. highest observed state (Σ_2) is still 30 cm⁻¹ below the dissociation limit.

^aK. Harada, K. Tanaka, and S. Nanbu, The 60th International Symposium on Molecular Spectroscopy, RH01, (2005).

^bR. R. Toczylowski, F. Doloresco, and S. M. Cybulski, J. Chem. Phys. 114, 851 (2001).