## REASSIGNMENT OF MILLIMETERWAVE SPECTRUM OF THE HCN INTERNAL ROTATION BANDS OF $\mathrm{H}_2\text{-HCN}$

KENSUKE HARADA, RISA YAMANAKA, and <u>KEIICHI TANAKA</u>, Department of Chemistry, Faculty of Sciences, Kyushu University, Fukuoka, 812-8581 JAPAN.

The  $H_2$ -HCN complex is a weakly bound molecular complex and we have reported the pure rotational transitions of  $H_2$ -HCN in the MMW region.<sup>a</sup> According to the results, ortho- and para- $H_2$  complexes have different structures in the ground state,  $H_2$  is attached to the nitrogen and hydrogen end of HCN, respectively, for ortho- and para- $H_2$  complexes and the  $\Sigma$  symmetry has been confirmed for both species.

We also reported the MMW spectroscopy of j=1-0 internal rotation band of  $H_2$ -HCN in 2006  $^b$ , where j is the quantum number for the HCN internal rotation. Although we assigned most of intense lines to the  $\Sigma_1 - \Sigma_0$  and  $\Pi_1 - \Sigma_0$  bands of (ortho) $H_2$ -HCN, some intense lines are unidentified. To confirm their assignments, we performed the MMW-MMW double resonance spectroscopy in the present study and came to the conclusion that our previous assignments of  $\Sigma_1 - \Sigma_0$  and  $\Pi_1 - \Sigma_0$  bands should be changed, and then all of the intense lines are finally assigned to the  $\Pi_1 - \Sigma_0$  ( $R_0$ ,  $R_1$ ,  $R_2$ ,  $R_2$ ,  $R_3$ ,  $R_4$ 

The band origins of the  $\Sigma_1 - \Sigma_0$  and  $\Pi_1 - \Sigma_0$  bands of (ortho) $H_2$ -HCN newly determined are 187 and 165 GHz, respectively. They are larger than those of Ne-HCN (133 and 107 GHz) but comparable with those of Ar-HCN (165 and 182 GHz, their order is reversed) indicating that the potential anisotropy of (ortho) $H_2$ -HCN is larger than that of Ne-HCN but comparable with that of Ar-HCN. The mean square amplitudes of HCN for excited states (57° and 51° for  $\Sigma_1$  and  $\Pi_1$ ), given by the analysis of hyperfine structure of the nitrogen nucleus, are much larger than that (33°) of the ground  $\Sigma_0$  state.

A plenty of weak lines in the 100-300 GHz region are still unassigned, possibly due to the higher internal rotation bands of ortho- $H_2$  complex, such as the  $\Delta_1 - \Pi_0$  band, as well as the fundamental bands ( $\Sigma_1 - \Sigma_0$  and  $\Pi_1 - \Sigma_0$ ) of para- $H_2$  complex. Analysis of these weak bands and survey in the region with pure para- $H_2$  sample are now in progress.

<sup>&</sup>lt;sup>a</sup>M. Ishiguro, T. Tanaka, K. Harada, C. J. Whitham and K. Tanaka, J. Chem. Phys. 115, 5155 (2001).

<sup>&</sup>lt;sup>b</sup>M. Hagi, K. Harada, and K. Tanaka, *The 61st International Symposium on Molecular Spectroscopy*, **TE01**, (2006).