IS WATER ICE THE PRECURSOR TO OH⁺ AND H₂O⁺ IN ORION KL?

<u>PAUL B. RIMMER</u>, Department of Physics, The Ohio State University, Columbus, OH 43210; ERIC HERBST, Departments of Astronomy, Chemistry and Physics, The Ohio State University, Columbus, OH 43210.

The reactive ions OH^+ and H_2O^+ have been observed in an outflow in front of the Orion KL region at significant column densities of $\sim 10^{13}$ cm⁻² with the Heterodyne Instrument for the Far Infrared (HIFI) on the Herschel Space Observatory. No H_3O^+ was observed, establishing an upper limit of $\approx 10^{12}$ cm⁻². This is unexpected, because both OH^+ and H_2O^+ react with molecular hydrogen to form H_3O^+ . The primary destruction of H_3O^+ is by recombination with electrons.

We explore the low velocity Orion KL outflow with a gas-grain PDR model where UV radiation, cosmic rays, X-rays, and temperature depend on both depth into the cloud and time. The model starts with cold core conditions and a radiation field of $\chi = 1$ and $\zeta_{H2} = 5 \times 10^{-17} \text{ s}^{-1}$ at the edge. Water ice collects on the grains at this time, and then as stars form, χ increases to 10^4 and ζ_{H2} becomes $5 \times 10^{-15} \text{ s}^{-1}$ at the edge. At all times, temperature is calculated via thermal balance using the Meudon PDR code. At $A_V < 4$ into the cloud the water desorbs off grains and becomes ionized by cosmic rays and X-rays, and dissociated by UV photons, increasing the rates of OH⁺ and H₂O⁺ formation. On the other hand, the increased electron fraction depletes the H₃O⁺. The results of this model agree to within a factor of 5 with observation, and place the H₃O⁺ column at $\approx 5 \times 10^{-11} \text{ cm}^{-2}$. We will discuss the model and its results for the OH⁺ and H₂O⁺ ions as well as predicted abundances for other species.