STATE-TO-STATE ROTATIONAL AND VIBRATIONAL ENERGY TRANSFERS FOLLOWING VIBRATIONAL EXCITATION OF (101000) AND (011200) IN THE GROUND ELECTRONIC STATE OF ACETYLENE

JIANDE HAN, KEITH FREEL, and MICHAEL C. HEAVEN, Department of Chemistry, Emory University, Atlanta, GA 30322.

We have examined state-to-state rotational and vibrational energy transfers for the vibrational levels (101000) and (011200) of C2H2 in the ground electronic state at ambient temperature. Measurements were made using a pulsed IR - UV double resonance technique. Total removal rate constants and state-to-state rotational energy transfer rate constants have been characterized for certain even-numbered rotational levels from J = 0 to 12 within the two vibrational modes. The measured state-to-state rotational energy transfer rate constants were fit to some energy-based empirical scaling and fitting laws, and the rate constants were found to be best reproduced by the statistical power-exponential gap law (PEGL). The measured rate constants were then further evaluated by a kinetic model which simulated the experimental spectra by solving simultaneous first order differential rate equations. Some rotationally-resolved vibrational energy transfer channels were also observed following excitation of (101000). The vibrational relaxation channels were found to contribute less than 30% to the total removal rate constants of the measured rotational levels for both of the studied vibrational states.