STATE-TO-STATE ROTATIONAL AND VIBRATIONAL ENERGY TRANSFERS FOLLOWING VIBRATIONAL EX-CITATION OF (1010⁰0⁰) AND (0112⁰0⁰) IN THE GROUND ELECTRONIC STATE OF ACETYLENE

<u>JIANDE HAN</u>, KEITH FREEL, and MICHAEL C. HEAVEN, *Department of Chemistry, Emory University, Atlanta, GA 30322.*

We have examined state-to-state rotational and vibrational energy transfers for the vibrational levels (1010^00^0) and (0112^00^0) of C₂H₂ in the ground electronic state at ambient temperature. Measurements were made using a pulsed IR - UV double resonance technique. Total removal rate constants and state-to-state rotational energy transfer rate constants have been characterized for certain even-numbered rotational levels from J = 0 to 12 within the two vibrational modes. The measured state-to-state rotational energy transfer rate constants were fit to some energy-based empirical scaling and fitting laws, and the rate constants were found to be best reproduced by the statistical power-exponential gap law (PEGL). The measured rate constants were then further evaluated by a kinetic model which simulated the experimental spectra by solving simultaneous first order differential rate equations. Some rotationally-resolved vibrational energy transfer channels were also observed following excitation of (1010^00^0) . The vibrational relaxation channels were found to contribute less than 30% to the total removal rate constants of the measured rotational levels for both of the studied vibrational states.