BLUE-DETUNED PHOTOASSOCIATION SPECTRUM IN Rb2

M. A. BELLOS, D. RAHMLOW, <u>R. CAROLLO</u>, J. BANERJEE, E. E. EYLER, P. L. GOULD, and W. C. STWALLEY, *Department of Physics, University of Connecticut, Storrs, CT 06269*.

We report on the observation of blue-detuned photoassociation as proposed in [1] and references therein. "Blue-detuned" refers to the location of vibrational levels — energetically above the corresponding atomic asymptote. Ultracold ⁸⁵Rb atoms in a MOT were photoassociated to levels of the $1^{3}\Pi_{g}$ state a few hundred wavenumbers above the $5S + 5P_{3/2}$ limit. These transitions were found to be strong even though they occur at short internuclear separations ($R_{e}=10 a_{0}$). Levels of the $1^{3}\Pi_{g}$ state spontaneously decay to the $a^{3}\Sigma_{u}^{+}$ state, where they are detected by resonantly enhanced multiphoton ionization with time-of-flight spectroscopy. We have observed most vibrational levels of the $1^{3}\Pi_{g}$ state belonging to all of its spin-orbit components ($0_{g}^{+}, 0_{g}^{-}, 1_{g}, 2_{g}$). Recent unpublished *ab-initio* calculations [2] of these potentials show good agreement with the observed vibrational and rotational constants. This work is supported by the NSF, AFOSR, and UConn Research Foundation.

[1] M.-L. Almazor *et. al., Eur. Phys. J. D* **15** 355 (2001) [2] O. Dulieu, private communication