COLLISIONAL ORIENTATION TRANSFER FACILIATED POLAROZATION SPECTROSCOPY^a

JIANMEI BAI, E.H.AHMED, B. BESER, Y. GUAN, A. M. LYYRA, *Temple University*; S. ASHMAN, C. M. WOLFE, J. HUENNEKENS, *Lehigh University*.

Collisional orientation transfer facilitated V-type double-resonance polarization spectroscopy technique was applied to study the A-b complex of Rb_2^a and Cs_2^b . Since spectral congestion makes it difficult to find isolated pump transitions for heavy molecules such as Rb_2 and Cs_2 , this technique significantly enlarges the range of rotational levels that can be observed per vibrational level. Collisional satellite lines with ΔJ up to 58 were observed in the Rb_2 polarization experiment. In the Cs_2 experiment, due to weaker Franck-Condon factors, collisional satellite lines with ΔJ_{max} equals to 12 were observed.

Collisional orientation transfer in polarization spectroscopy was first observed with buffer gas pressure of several hundred Torr^c . The high pressure led to loss of spectral resolution from collisional broadening. Only 1 to 3 Torr of argon buffer gas pressure was used in our experiments to obtain spectra with much higher resolution. Among the six types of possible probe signals^{*d*}, we assigned and analyzed the signals from the V type excitation scheme. The data was used in the global deperturbation analysis of the A-b complex of both Rb₂ and Cs₂.

^aFunded by NSF PHY 0555608 and PHY 0855502

^aH. Salami et al. Phys. Rev. A 80, 022515 (2009)

^bJianmei Bai et al., Phys. Rev. A, to appear (2011)

^cB. Teets et al. Phys. Rev. Lett. 37, 683 (1976)

^dN. Okada et al. J. Chem. Phys. 105, 3458 (1996)