THE PFI-ZEKE SPECTRUM OF HfF⁺, IN SUPPORT OF FUNDAMENTAL PHYSICS

BEAU J. BARKER, IVAN O. ANTONOV, VLADIMIR E. BONDYBEY, and MICHAEL C. HEAVEN, *Department of Chemistry, Emory University, Atlanta, GA 30322*.

The HfF⁺ cation has been identified as a molecule with favorable properties for investigation of the dipole moment of the electron. The ion is predicted to have a ${}^{1}\Sigma^{+}$ ground state, but the state of greatest interest is the low-lying ${}^{3}\Delta_{1}$ state, which correlates with Hf⁺(6s5d)F⁻. A high internal electric field may be generated when the Ω =1 state is polarized by a modest external field. In the present work, spectroscopic data for the ground and low-lying states HfF⁺ have been obtained using the technique of pulse field ionization - zero electron kinetic energy (PFI-ZEKE) spectroscopy. Sequential two-photon excitation was used, with the first photon set to excite a transition near 28593 cm⁻¹. This previously unreported band was used as it is at slightly less than half of the ionization energy (IE), and therefore not subject to one-color, two-photon ionization. PFI-ZEKE spectra were recorded for the levels X¹Σ⁺ (v=0-6), ${}^{3}\Delta_{1}$ (v=0-3), ${}^{3}\Delta_{2}$ (v=0-3), and ${}^{3}\Delta_{3}$ (v=0,1). Rotational resolution was achieved using single rotational line excitation of the intermediate state. The IE for HfF was found to be 59477 cm⁻¹. Term energies and molecular constants for the ground and low-lying states of HfF⁺ will be reported.