HIGH RESOLUTION INFRARED AND MICROWAVE SPECTRA OF NH₃-HCCH AND NH₃-OCS COMPLEXES: STUDIES OF WEAK C-H···N HYDROGEN BOND AND ELECTRIC MULTIPOLE INTERACTIONS

XUNCHEN LIU, YUNJIE XU, Department of Chemistry, University of Alberta, Edmonton, Canada, T6G 2G2.

C-H···N weak hydrogen bond is of much current interest. We report the first high resolution infrared spectroscopic study of a prototypical C-H···N bonded system, i.e. NH₃-HCCH, at the vicinity of the ν 4 band of NH₃. The spectrum has been recorded using an infrared spectrometer equipped with an astigmatic multipass cell aligned for 366 passes and a room temperature external cavity quantum cascade laser at the 6 μ m region. The perpendicular band spectrum of symmetric top rotor observed is consistent with the previous microwave^{*a*} and infrared^{*b*} studies at 3 μ m. We also extended the previous microwave measurement to higher *J* and *K*.

For the related NH₃-OCS complex, microwave spectrum of J up to 6 and infrared spectrum at the vicinity of the ν 4 band of NH₃ have been recorded and analyzed for the first time. Comparison has been made with the previously studied isoelectronic complexes such as NH₃-N₂O^c and NH₃-CO₂.^d The source of the difference will be discussed with the aid of *ab initio* calculations.

^aG.T. Fraser, K.R. Leopold, and W. Klemperer, J. Chem. Phys. 80(4), 1423, (1984)

^bG. Hilpert, G.T. Fraser, and A.S. Pine, J. Chem. Phys. 105(15), 6183, (1996)

^cG.T. Fraser, D.D. Nelson, JR., G.J. Gerfen, and W. Klemperer, J. Chem. Phys. 83(11), 5442, (1985)

^dG.T. Fraser, K.R. Leopold, and W. Klemperer, J. Chem. Phys. 81(6), 2577, (1984)