ROTATION-TUNNELING ANALYSIS OF EXCITED-STATE PROTON TRANSFER IN DEUTERATED TROPOLONE

KATHRYN CHEW, DEACON J. NEMCHICK, JOHN E. WOLFF, and PATRICK H. VACCARO, Department of Chemistry, Yale University, P. O. Box 208107, New Haven, CT 06520-8107 USA.

The origin band of the $\tilde{A}^1B_2 - \tilde{X}^1A_1$ ($\pi^* \leftarrow \pi$) absorption system in monodeuterated tropolone (TrOD) has been probed with rotational resolution by applying polarization-resolved degenerate four-wave mixing (DFWM) spectroscopy under ambient, bulk-gas conditions. Judicious selection of polarization geometries for incident and detected electromagnetic waves alleviated intrinsic spectral congestion and facilitated dissection of overlapping transitions, thereby enabling refined rotational-tunneling parameters to be extracted for the \tilde{A}^1B_2 ($\pi^*\pi$) manifold. A pronounced 2.14(5) cm⁻¹ bifurcation of rovibronic features is measured for the zero-point level of electronically excited TrOD, reflecting the presence of a substantial potential barrier along the O–D···O \leftrightarrow O···D–O reaction coordinate^{*a*} and representing nearly a ten-fold decrease in magnitude over the analogous tunneling-induced splitting for the parent (TrOH) isotopolog. The dependence of hydron-migration dynamics on internal degrees of freedom will be discussed in light of donoracceptor displacements incurred by $\pi^* \leftarrow \pi$ electron promotion and structural effects accompanying selective isotopic modification of the tropolone molecular framework.

^{*a*}Estimated to be of 1270.6 cm⁻¹ height at the fully-optimized EOM-CCSD/aug-cc-pVDZ level of theory; L. A. Burns, D. Murdock, and P. H. Vaccaro, *J. Chem. Phys.* **130**, 144304 (2009).