ROTATIONAL AND HYPERFINE ANALYSIS OF THE $a^1\Delta_g \leftarrow X^3\Sigma_g^-$ BAND OF 17O-CONTAINING ISOTOPOLOGUES OF OXYGEN MEASURED BY CRDS AT ROOM AND LIQUID NITROGEN TEMPERATURES

O. M. LESHCHISHINA, S. KASSI, Université de Grenoble, CNRS UMR 5588, LIPHY, 38041 Grenoble, France; I. E. GORDON, Harvard-Smithsonian Center for Astrophysics, Atomic and Molecular Physics Division, Cambridge MA 02138-1516, USA; S. YU, Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, CA 91109, USA; A. CAMPARGUE, Université de Grenoble, CNRS UMR 5588, LIPHY, 38041 Grenoble, France.

The $a^1\Delta_g \leftarrow X^3\Sigma_g^-$ system of the 16O17O, 17O18O and 17O$_2$ isotopologues of oxygen was studied by high sensitivity CW-Cavity Ring Down Spectroscopy. The spectra of a 17O highly enriched sample were recorded at room temperature between 7640 and 7917 cm$^{-1}$ and at liquid nitrogen temperature in the 7876-7893 cm$^{-1}$ region. The magnetic dipole (0-0) band was observed for all three 17O-containing isotopologues. At liquid nitrogen temperature some of the transitions were observed with partially resolved hyperfine splitting due to the 17O nuclear spin, allowing determination of the hyperfine constants. The electric quadrupole (0-0) band and the (1-1) magnetic dipole hot band were also observed for the 16O17O and 17O$_2$ species. The rotational and hyperfine spectroscopic parameters of the $X^3\Sigma_g^-$ and $a^1\Delta_g$ states of the three studied isotopologues were derived from global fit of the measured line positions and microwave and Raman measurements available in the literature. The rotational constants of the $a^1\Delta_g$ ($v=0, 1$) states of 17O$_2$ are determined for the first time.