INFRARED SPECTRA OF He-CS2, Ne-CS2, AND Ar-CS2

F. MIVEHVAR, J. NOROOZ OLIAEE, N. MOAZZEN-AHMADI, Department of Physics and Astronomy, University of Calgary, Calgary, AB T2N 1N4, Canada.

Infrared spectra of weakly bound Rg–CS₂ (Rg = He, Ne, and Ar) clusters formed in a pulsed supersonic slit-jet expansion have been recorded by exciting the CS₂ ν_3 fundamental band (~ 1535 cm⁻¹) using a tuneable diode laser. Spectra were well fitted to a conventional semi-rigid asymmetric rotor Hamiltonian. The He–CS₂ spectrum was assigned to an a-type band, while spectra of Ne–CS₂ and Ar–CS₂ were well described by b-type bands, indicating a/b axis switching in transition from the He–CS₂ complex to the Ne–CS₂ and Ar–CS₂ complexes. The results show that the complexes have vibrationally averged T-shaped structures. The determined structural parameters along with the observed vibrational shifts are R = 3.81, 3.57 and 3.71 Å, $\theta = 80.0, 86.9$ and 86.4° and $\Delta\nu = 0.171, 0.181$ and 0.067 cm⁻¹ for He–CS₂ and Ar–CS₂ respectively. Here, R is the distance between the rare gas and the carbon atom, θ is the the angle between R and and the CS₂ axis and $\Delta\nu$ is the vibrational shift with respect to the free CS₂ monomer.