Observation of C–H⋯π Interactions: Microwave Spectra and Structures of the CH₂Fx⋯HCCH (X=F,Cl) Weakly Bound Complexes

Lena F. Elmuti, Daniel A. Obenchain, Don L. Jurkowski, Amelia J. Sanders, Rebecca A. Peebles, Sean A. Peebles, Department of Chemistry, Eastern Illinois University, 600 Lincoln Avenue, Charleston, IL 61920; Amanda L. Steber, Justin L. Neill, Brooks H. Pate, Department of Chemistry, University of Virginia, McCormick Rd., PO Box 400319, Charlottesville, VA 22904.

With an interest in characterizing C–H⋯π interactions, CH₂F₂⋯HCCH and CH₂ClF⋯HCCH have been examined by Fourier-transform microwave (FTMW) spectroscopy. These interactions involve the π bond in acetylene acting as a hydrogen bond acceptor to both hydrogen atoms of CH₂Fx. In addition, there is a secondary contact between one hydrogen atom from acetylene and the X atom in the halomethane (X=F in CH₂F₂, X=Cl in CH₂ClF).

Initial assignments for the most abundant isotopologues of both species were completed using the chirped-pulse FTMW spectrometers at the University of Virginia (CH₂ClF⋯HCCH) and at Eastern Illinois University (CH₂F₂⋯HCCH). Rotational constants obtained from experiment are in good agreement with those of the most stable orientations predicted by ab initio calculations at the MP2/6-311++G(2d,2p) level. Multiple isotopically substituted species for each complex were measured using a Balle-Flygare cavity FTMW spectrometer at Eastern Illinois University. Spectroscopic parameters for all observed isotopologues will be presented, and a comparison of the C–H⋯π interactions in these and related complexes will be discussed.