NOVEL PATTERNS OF TORSION - INVERSION TUNNELING AND TORSION - ROTATION COUPLING IN THE
ν_{11} CH - STRETCH REGION OF CH$_3$NH$_2$

MAHESH B DAWADI, SYLVESTRE TWAGIRAYEZU, C. MICHAEL LINDSAY, a AND DAVID S. PERRY,
Department of Chemistry, The University of Akron, OH 44325-3601; LI-HONG XU, Department of Physics,
Centre for Laser, Atomic and Molecular Studies (CLAMS) University of New Brunswick, Saint John, New
Brunswick, Canada E2L 4L5.

The high-resolution infrared spectrum of CH$_3$NH$_2$ has been recorded using slit-jet absorption spectroscopy in the ν_{11} asymmetric CH-stretch region (2965 to 3005 cm$^{-1}$) with resolution of 0.003 cm$^{-1}$. The 580 lines, assigned by ground state combination differences, represent 27 subbands with $|K'| \leq 2$ for the A, B, E_1 and E_2 symmetries. Several of the observed subbands are split by perturbations. The analysis of spectrum shows that the patterns of the torsion-inversion tunneling splittings are qualitatively different from the ground state. In addition, the low - J splittings between $|K'| = +|K'|$ and $-|K'|$ are greatly reduced relative to the ground state in both the E_1 and the E_2 species, indicating that torsion-rotation coupling is suppressed in the ν_{11} CH-stretch excited state.

aPresent address: U.S. Air Force Research Laboratory, 2306 Perimeter Rd, Eglin AFB, FL 32542-5910