FAR-INFRARED SYNCHROTRON-BASED SPECTROSCOPY OF FURAN: ANALYSIS OF THE $\nu_{14} - \nu_{11}$ PERTURBATION AND THE ν_{18} AND ν_{19} LEVELS

D. W. TOKARYK, S. D. CULLIGAN, Department of Physics and Centre for Laser, Atomic and Molecular Sciences, University of New Brunswick, Fredericton, NB, Canada E3B 5A3; B. E. BILLINGHURST, Canadian Light Source, Inc., 101 Perimeter Road, University of Saskatchewan, Saskatoon, SK, Canada S7N 0X4; and J. A. van WIJNGAARDEN, Department of Chemistry, University of Manitoba, Winnipeg, MB, Canada R3T 2N2.

The ν_{14} vibrational level of furan lies 603 cm$^{-1}$ above the ground vibrational state. It is the lowest lying vibrational level for which a transition from the ground state is allowed. Other groups have conducted rotational analyses on fundamental bands of furan at 745 cm$^{-1}$ (ν_{13}), 995 cm$^{-1}$ (ν_{7}), and at 1067 cm$^{-1}$ (ν_{6}). We have taken the rotationally resolved spectrum of the c-type ν_{14} band at the Canadian Light Source synchrotron with a Bruker IFS125HR Fourier transform spectrometer operating at 0.00096 cm$^{-1}$ resolution, and have found it to be perturbed by the ν_{11} band at 600 cm$^{-1}$, for which transitions from the ground vibrational state are forbidden. By taking the spectra of the b-type ν_{18} fundamental band and of the very weak c-type $\nu_{18} - \nu_{11}$ band we have been able to analyze the $\nu_{14} - \nu_{11}$ perturbation. We have also analyzed the spectrum of the b-type ν_{19} fundamental band.

aCurrent address: Inorganic Chemistry Laboratory, South Parks Road, University of Oxford, UK OX1 3QR