ROTATIONALLY RESOLVED SPECTRA OF THE B² Π - X² Π 0₀⁰ AND $\mu^2\Sigma$ - $\mu^2\Sigma$ 11₁¹ TRANSITIONS OF C₆H AND C₆D

<u>D. ZHAO</u>, M.A. HADDAD, Institute for Lasers, Life and Biophotonics Amsterdam, De Boelelaan-1081, NL 1081 HV Amsterdam, Netherlands; H. LINNARTZ, Raymond and Beverly Sackler Laboratory for Astrophysics, Leiden Observatory, Leiden University, P.O. Box 9513, NL-2300 RA Leiden, and Institute for Lasers, Life and Biophotonics Amsterdam, De Boelelaan 1081, NL-1081 HV Amsterdam, Netherlands; W. UBACHS, Institute for Lasers, Life and Biophotonics Amsterdam, De Boelelaan-1081, NL 1081 HV Amsterdam, Netherlands.

The linear carbon chain radicals have been topic of a series of spectroscopic studies. The hexatriynyl radical C_6H (and deuterated equivalent C_6D), a member of the linear C_nH series, has attracted renewed interest in recent years after the astronomical identification of its chemically related anion C_6H^- and its low-lying $11_1 \mu^2 \Sigma$ vobronic state.

In this talk, rotationally resolved spectra of the $B^2\Pi - X^2\Pi 0_0^0$ and 11_1^1 transitions of both C_6H and C_6D are presented. Cavity ringdown spectroscopy is used to record the spectra in direct absorption through a supersonically expanding planar plasma. The $\mu^2\Sigma$ - $\mu^2\Sigma 11_1^1$ vobronic hot bands are observed for the first time. Heavy rotational perturbations are found in the upper levels of C_6D . Precise spectroscopic parameters for the $11^1 \mu^2\Sigma$ levels of both C_6H and C_6D are determined for the first time, and the spectroscopic parameters for the $B^2\Pi 0^0$ states are also improved. The Renner-Teller interaction is also discussed to estimate the excitation energies of the low-lying $11_1 \mu^2\Sigma$ vibronic states.