OBSERVATION OF $\Omega=1/2$ STATES IN NiH THROUGH COLLISIONALLY INDUCED FLUORESCENCE

C. RICHARD^a, P. CROZET, A. J. ROSS, *Université Lyon 1; CNRS; LASIM UMR 5579, 43 Bd du 11 novembre 1918, F-69622 Villeurbanne, France*; D. W. TOKARYK, *Department of Physics and Center for Laser, Atomic, and Molecular Sciences, University of New Brunswick, Fredericton, Canada E3B 5A3.*

Fourier transform spectra of collisionally induced fluorescence following isotopically selective laser excitation of NiH at ~ 550 nm has allowed us to locate an exited $\Omega'=1/2$ state of NiH lying 17900 cm $^{-1}$ above the electronic ground state. We identify this as v=0 of a $^2\Pi_{1/2}$ state, originating from the Ni $^+$ $3d^84s^1$ 2F configuration, from the ab initio studies published by Zou and Liu in 2007^b . Emission from the [17.9]0.5 state occurs to v''=0 and 1 of the $^2\Sigma^+$ and $^2\Pi_{1/2}$ low-lying ligand field states, locating hitherto elusive $^2\Pi_{1/2}$ f parity levels to within 0.01 cm $^{-1}$.

Collisionally induced fluorescence following laser excitation at lower energies has been recorded in the presence of a magnetic field (0.7-1 Tesla), at Doppler resolution. The partially resolved Zeeman patterns have been used to derive effective Landé factors g_J for the v=0 and 1 levels of the low-lying $\Omega''=5/2$ and 3/2 states ($^2\Delta$ and $^2\Pi$ states from Ni⁺ $3d^9$). These are compared with predictions from a revised fit of zero-field energy levels, now including the new observations concerning the $\Omega''=1/2$ states.

^aCurrent address: Harvard-Smithsonian Center for Astrophysics, Atomic and Molecular Physics Division, Cambridge MA 02138, USA

^bW.L. Zou, W.J. Liu. J. Comp. Chem. 28 (2007) 2286-98