OPTICAL PUMPING AND ELECTRON SPIN RESONANCE OF SINGLE $^{87}\mathrm{Rb}$ ATOMS ON HELIUM NANODROPLETS

MARKUS KOCH, JOHANNES POMS, ALEXANDER VOLK, and WOLFGANG E. ERNST, *Institute of Experimental Physics, TU Graz, Petersgasse 16, 8010 Graz, Austria.*

Our recent development of electron spin resonance (ESR) spectroscopy on superfluid helium nanodroplets (He_N) provides a sensitive tool to investigate interactions between a surface located alkali-metal atom and an ESR silent species inside the droplet^a. Highest sensitivity is expected for alkali-metal atoms with large hyperfine coupling. We present hyperfine resolved ESR spectra of single ⁸⁷Rb (hyperfine constant $a_{\rm HFS}=3417\,{\rm MHz}$) atoms isolated on ${\rm He_N}^b$. In accordance with our previous work on ⁸⁵Rb ($a_{\rm HFS}=1012\,{\rm MHz}$) we find a droplet size dependent increase of $a_{\rm HFS}$ between 400 and 450 ppm, due to the electronic perturbation by the helium environment. The process of optical pumping and of optical detection on ${\rm He_N}$ is investigated in detail in order to optimize the ESR signal. A simple model for optical pumping on ${\rm He_N}$ is presented, which agrees well with the experimental results.

^aM. Koch, G. Auböck, C. Callegari, and W.E. Ernst, Phys. Rev. Lett. **103**, 035302 (2009)

^b A. Volk, J. Poms, M. Koch, and W.E. Ernst, J. Phys. Chem. A, in press