HIGH RESOLUTION FAR INFRARED FOURIER TRANSFORM SPECTROSCOPY OF THE NH ${ }_{2}$ RADICAL.

M. A. MARTIN-DRUMEL, O. PIRALI, D. BALCON, SOLEIL Synchrotron, AILES beamline, Saint-Aubin, France and Institut des Sciences Moleculaires d'Orsay, ISMO, CNRS, Universite Paris XI, Orsay, France; M. VERVLOET, SOLEIL Synchrotron, AILES beamline, Saint-Aubin, France.

First identified toward $\mathrm{Sgr} \mathrm{B} 2^{a}$, the NH_{2} radical has recently been detected in the interstellar medium by the HIFI instrument on board of Herschel ${ }^{b}$. Despite the fact that this radical has not been detected in brown dwarfs and exoplanets yet, it is already included in physical and chemical models of those environments ${ }^{c}$ (temperature higher than 2000 K expected in several objects). Its detection in those objects will depend on the existence of a reliable high temperature and high resolution spectroscopic database on the NH_{2} radical.
The absorption spectrum of NH_{2} has been recorded between 15 and $700 \mathrm{~cm}^{-1}$ at the highest resolution available using the Bruker IFS125HR Fourier transform interferometer connected to the far infrared AILES beamline at SOLEIL (R=0.001 cm^{-1}). The radical was produced by an electrical discharge (DC) through a continuous flow of NH_{3} and He using the White-type discharge cell developped on the beamline (optical path: 24 m).
Thanks to the brilliance of the synchrotron radiation, more than 700 pure rotational transitions of NH_{2} have been identified with high N values $\left(\mathrm{N}_{\max }=25\right)$ in its fundamental and first excited vibrational modes. By comparison to the previous FT spectroscopic study on that radical in the FIR spectral range ${ }^{d}$, asymmetric splitting as well as fine and hyperfine structure have been resolved for several transitions.

[^0]
[^0]: ${ }^{a}$ E. F. Van Dishoeck, D. J. Jansen, P. Schilke, T. G. Phillips The Astrophysical Journal 416, L83-L86 (1993)
 ${ }^{b}$ C. M. Persson, J. H. Black, J. Cernicharo et al. Astronomy and Astrophysics 521, L45 (2010)
 ${ }^{c}$ K. Lodders and B. Fegley, Jr Icarus 155, 393424 (2002)
 ${ }^{d}$ I. Morino and K. Kawaguchi Journal of Molecular Spectroscopy 182, 428-438 (1997)

