INFRARED SPECTRA OF CS_2 TRIMER: OBSERVATION OF AN ISOMER WITH D_3 SYMMETRY

M. REZAEI, J. NOROOZ OLIAEE, <u>N. MOAZZEN-AHMADI</u>, Department of Physics and Astronomy, University of Calgary, Calgary, AB T2N 1N4, Canada; A.R.W. MCKELLAR, Steacie Institute for Molecular Sciences, National Research Council of Canada, Ottawa, ON K1A 0R6, Canada.

Infrared spectra of carbon disulfide trimer formed in a pulsed supersonic slit-jet expansion are obtained via direct absorption of a tuneable diode laser in the region of the CS_2 ν_3 fundamental band ($\sim 1535~cm^{-1}$). Two bands sharing the same lower state were assigned to $(C^{32}S_2)_3$. These correspond to the two infrared active vibrations (a parallel and a perpendicular band) of the constituent CS_2 asymmetric stretches. The weaker perpendicular band is centered at $1524.613~cm^{-1}$. It is shifted by $-10.74~cm^{-1}$ with respect to the free CS_2 monomer. The parallel band which is significantly stronger is centered at $1545.669~cm^{-1}$. It has a vibrational shift of $+10.31~cm^{-1}$. The transitions with $K \neq 3n$ and those with J = odd and K = 0 in the ground state are absent in both bands. This rigorously establishes that this isomer of carbon disulfide trimer has D_3 symmetry. Thanks to the symmetry, only two parameters, the C-C distance and the angle between a monomer axis and the plane containing the C atoms, are required to fully define the structure of the trimer. These were determined to be 3.811~Å and 61.8° , respectively. In addition, a parallel band corresponding to a single ^{34}S substitution was observed around $1544.46~cm^{-1}$. Results from this band are in complete agreement with those of the two bands for $(C^{32}S_2)_3$.