ELECTRONIC TRANSITIONS AND SPIN-ORBIT SPLITTING OF LANTHANUM DIMER

YANG LIU, LU WU, CHANGHUA ZHANG, and DONG-SHENG YANG, Department of Chemistry, University of Kentucky, Lexington, KY 40506-0055.

Lanthanum dimer (La₂) was studied by mass-analyzed threshold ionization (MATI) spectroscopy and a series of high-level multiconfiguration ab initio calculations (CASSCF, CASPT2, and MRCI). The MATI spectrum exhibits three band systems originating at 39044, 40312, and 40862 cm⁻¹, respectively. Above the band origin, the first band system displays a vibrational progression of ~232 cm⁻¹, and the other two show vibrational progression with the same interval of ~240 cm⁻¹. Below the band origin, the three systems exhibit the same vibrational interval of ~207 cm⁻¹. These band systems are assigned to three electronic transitions from the ground state of La₂ to the low-lying electronic states of La₂⁺: ${}^{2}\Sigma_{g}^{+} \leftarrow {}^{1}\Sigma_{g}^{+}$, ${}^{2}\Pi_{u,1/2} \leftarrow {}^{1}\Sigma_{g}^{+}$, and ${}^{2}\Pi_{u,3/2} \leftarrow {}^{1}\Sigma_{g}^{+}$. The spin-orbit splitting in the ${}^{2}\Pi_{u}$ ion state is 550 cm⁻¹. In addition, the electronic states and bonding of La₂ will be compared with those of Sc₂ and Y₂.