OPTICAL STARK SPECTROSCOPY OF THE $\tilde{A}^2\Pi$ - $\tilde{X}^2\Sigma^+$ band of baoh

SARAH E. FREY AND TIMOTHY C. STEIMLE, Department of Chemistry and Biochemistry, Arizona State University, Tempe, AZ 85287, USA.

Transitions of the $\tilde{A}^2\Pi$ - $\tilde{X}^2\Sigma^+$ band system of barium monohydroxide, BaOH, were observed and recorded from 11483-11485 cm⁻¹ and 12041-12044 cm⁻¹. The features were readily identified using the results of the Doppler-limited measurements^{*a*}. The laser induced fluorescence (LIF) spectrum was analyzed to give optimized field-free excited state parameters. The parameters for the $\tilde{X}^2\Sigma^+$ state were constrained to the previously determined values^{*b*}. The permanent electric dipole moments for the $\tilde{X}^2\Sigma^+$ and $\tilde{A}^2\Pi$ states have been determined from the analysis of the optical Stark spectra for the R₂₁(0.5), Q₂₁(1.5), and R₂(0.5) lines. The obtained values were $\mu(\tilde{X}^2\Sigma^+)= 1.426(38)D$ and $\mu(\tilde{A}^2\Pi)= 0.477(7)$ D. The results are compared with predicted values from semi-empirical models and those for CaOH and SrOH^{*c*}.

^aJ. G. Wang, J. D. Tandy and P. F. Bernath J. Mol. Spectrosc. 252, 31 (2008)

^bM. A. Anderson, M. D. Allen, W. L. Barclay, Jr, and L. M. Ziurys Chem. Phys. Lett 205, 415 (1993)

^cT. C. Steimle, D. A. Fletcher, K. Y. Jung and C. T. Scurlock J. Chem. Phys. 96, 2556 (1992)