CARBON DIOXIDE CLUSTERS: (CO$_2$)$_6$ TO (CO$_2$)$_{13}$

A.R.W. McKellar, Steacie Institute for Molecular Sciences, National Research Council of Canada, Ottawa, ON K1A 0R6, Canada; J. Norooz Oliaee, M. Dehgany, and N. Moazzen-Ahmadi, Department of Physics and Astronomy, University of Calgary, 2500 University Dr., N.W., Calgary, AB T2N 1N4, Canada.

We recently reported assignments of specific infrared bands in the CO$_2$ ν_3 region (\(\sim 2350 \text{ cm}^{-1}\)) to (CO$_2$)$_6$, (CO$_2$)$_7$, (CO$_2$)$_9$, (CO$_2$)$_{10}$, (CO$_2$)$_{11}$, (CO$_2$)$_{12}$, and (CO$_2$)$_{13}$. Spectra are obtained by direct absorption using a rapid-scan tuneable diode laser spectrometer to probe a pulsed supersonic slit-jet expansion and assignments are facilitated by recent calculations of Takeuchi based on the Murthy potential. (CO$_2$)$_6$ is a symmetric top with S_6 point group symmetry which can be thought of as a stack of two planar cyclic trimers. (CO$_2$)$_{13}$ is also an S_6 symmetric top, and consists of a single CO$_2$ monomer surrounded by an slightly distorted icosahedral cage. The remaining clusters are asymmetric tops without symmetry.

Here we report additional CO$_2$ cluster results. Calculations based on the SAPT-s potential indicate that the structure of (CO$_2$)$_{10}$ may be slightly different from that given by Takeuchi/Murthy. An additional band is observed for each of (CO$_2$)$_{13}$ and (CO$_2$)$_{10}$. A feature observed at 2378.2 cm$^{-1}$ is assigned as a (CO$_2$)$_6$ parallel combination band involving the sum of a fundamental and a low-lying intermolecular vibration. Most significantly, two bands are assigned to a second isomer of (CO$_2$)$_6$. This is also a symmetric top, but now with S_4 symmetry. The two symmetric hexamer isomers observed spectroscopically correspond well with the lowest energy structures given by both the SAPT-s and Murthy intermolecular potentials.
