CARBON DIOXIDE CLUSTERS: (CO2)6 TO (CO2)13

<u>A.R.W. MCKELLAR</u>, Steacie Institute for Molecular Sciences, National Research Council of Canada, Ottawa, ON K1A 0R6, Canada; J. NOROOZ OLIAEE, M. DEHGHANY, and N. MOAZZEN-AHMADI, Department of Physics and Astronomy, University of Calgary, 2500 University Dr., N.W., Calgary, AB T2N 1N4, Canada.

We recently reported^{*a*} assignments of specific infrared bands in the CO₂ ν_3 region (~2350 cm⁻¹) to (CO₂)₆, (CO₂)₇, (CO₂)₉, (CO₂)₁₀, (CO₂)₁₁, (CO₂)₁₂, and (CO₂)₁₃. Spectra are obtained by direct absorption using a rapid-scan tuneable diode laser spectrometer to probe a pulsed supersonic slit-jet expansion and assignments are facilitated by recent calculations of Takeuchi based on the Murthy potential.^{*b*} (CO₂)₆ is a symmetric top with S₆ point group symmetry which can be thought of as a stack of two planar cyclic trimers. (CO₂)₁₃ is also an S₆ symmetric top, and consists of a single CO₂ monomer surrounded by an slightly distorted icosahedral cage. The remaining clusters are asymmetric tops without symmetry.

Here we report additional CO₂ cluster results. Calculations based on the SAPT-s potential^c indicate that the structure of $(CO_2)_{10}$ may be slightly different from that given by Takeuchi/Murthy. An additional band is observed for each of $(CO_2)_{13}$ and $(CO_2)_{10}$. A feature observed at 2378.2 cm⁻¹ is assigned as a $(CO_2)_6$ parallel combination band involving the sum of a fundamental and a low-lying intermolecular vibration. Most significantly, two bands are assigned to a second isomer of $(CO_2)_6$. This is also a symmetric top, but now with S_4 symmetry. The two symmetric hexamer isomers observed spectroscopically correspond well with the lowest energy structures given by both the SAPT-s and Murthy intermolecular potentials.

^aJ. Norooz Oliaee, M. Dehgany, N. Moazzen-Ahmadi, and A.R.W. McKellar, Phys. Chem. Chem. Phys. 13, 1297 (2011).

^bH. Takeuchi, J. Phys. Chem. A 107, 5703 (2008); C.S. Murthy, S.F. O'Shea, and I.R. McDonald, Mol. Phys. 50, 531 (1983).

^cR. Bukowski, J. Sadlej, B. Jeziorski, P. Jankowski, K. Szalewicz, S.A. Kucharski, H.L. Williams, and B.M. Rice, J. Chem. Phys. 110, 3785 (1999).