HIGH RESOLUTION LASER SPECTROSCOPY OF SrOCH3

<u>D. FORTHOMME</u>, C. LINTON, D. W. TOKARYK, Centre for Laser, Atomic, and Molecular Sciences and Physics Department, 8 Bailey Dr., University of New Brunswick, P.O. Box 4400, Fredericton, NB, Canada E3B 5A3; A.G. ADAM, A.D. GRANGER, L. E. DOWNIE, W. S. HOPKINS, Centre for Laser, Atomic, and Molecular Sciences and Chemistry Department, 30 Dineen Dr., University of New Brunswick, P.O. Box 4400, Fredericton, NB, Canada E3B 5A3.

The $\tilde{A}^2\mathrm{E}-\tilde{X}^2\mathrm{A}_1$ transition of SrOCH₃ was first studied at high resolution by O'Brien et al.^a using a Broida oven. However lines with typically J≤20 were not observed and congestion prevented them from resolving transitions from the $\Omega=1/2$ component of the upper state. We have studied the $\tilde{B}^2A_1-\tilde{X}^2A_1$ and the $\tilde{A}^2E-\tilde{X}^2A_1$ transitions of SrOCH₃ in a laser ablation molecular jet source, where jet cooling and low Doppler widths greatly simplified the spectra. An optical-optical double resonance technique facilitated definite assignments in a number of the transitions observed. Our analysis of the $\tilde{A}^2E-\tilde{X}^2A_1$ transition was straightforward, but a perturbation was observed in the \tilde{B}^2A_1 K'=1 F_2 levels. A satisfactory fit was achieved for the $\tilde{B}^2A_1-\tilde{X}^2A_1$ transition when a separate B parameter was used to fit the perturbed levels.

^aL. C. O'Brien, C. R. Brazier and P. F. Bernath, J. Mol. Spectrosc. 130 (1988) 33-45