THE VISIBLE SPECTRUM OF Si3

XIUJUAN ZHUANG, <u>TIMOTHY C. STEIMLE</u>, Department of Chemistry and Biochemistry, Arizona State University, Tempe, AZ 85287; N. REILLY, D. KOKKIN and M. C. McCARTHY, Harvard-Smithsonian Center for Astrophysics, Cambridge, Massachusetts 02138, USA; J. F. STANTON, Chemistry Department and Biochemistry, U. of Texas, Austin, TX 78712, USA; T. D. CRAWFORD and B. FORTENBERRY, Chemistry Department, Virgina Tech, Blackbury VA 24061, USA; J. P. MAIER, Department of Chemistry, University of Basel, Basel, Switzerland.

We report the first recording of the visible spectrum of gas-phase Si₃. A cold molecular beam sample was produced by skimming the output of a pulsed discharge source. The 545-490 nm spectral region was examined using both mass-selected REMPI and pulsed dye laser excitation with LIF detection. Dispersed fluorescence and lifetime measurements of numerous bands were recorded. The spectrum has an origin at 18600 cm⁻¹ and a progression in the symmetric stretch with a harmonic frequency of 445 cm⁻¹. The bands are assigned to the $1^{3}A_{1}''$ - $\tilde{a}A_{2}'$ transition of the D_{3h} isomer based upon new and previous^{*a*} predictions. A vibrational progression observed in the dispersed fluorescence having a spacing of 505 cm⁻¹ is in agreement with previous ZEKE studies^{*b*}. An additional vibrational progression observed in dispersed fluorescence having a spacing of 173 cm⁻¹ is in agreement with the bending frequency for the $\tilde{X}^{1}A_{1}$ state of the C_{2v} isomer estimated from the pure rotational spectrum.^{*c*}

^aP. Garcia-Fernandez, J. Boggs and J. P. Stanton J. Chem. Phys. 126, 074305 (2007)

^bC. C.Arnold and D. M. Neumark J. Chem. Phys. 100, 1797 (1994)

^cM. C.McCarthy and P. Thaddeus Phys.Rev. Lett. 90, 213003 (2003)