We report the first recording of the visible spectrum of gas-phase Si$_3$. A cold molecular beam sample was produced by skimming the output of a pulsed discharge source. The 545-490 nm spectral region was examined using both mass-selected REMPI and pulsed dye laser excitation with LIF detection. Dispersed fluorescence and lifetime measurements of numerous bands were recorded. The spectrum has an origin at 18600 cm$^{-1}$ and a progression in the symmetric stretch with a harmonic frequency of 445 cm$^{-1}$. The bands are assigned to the $1^3A_1''$ - $\tilde{a}A_2'$ transition of the D_{3h} isomer based upon new and previousa predictions. A vibrational progression observed in the dispersed fluorescence having a spacing of 505 cm$^{-1}$ is in agreement with previous ZEKE studiesb. An additional vibrational progression observed in dispersed fluorescence having a spacing of 173 cm$^{-1}$ is in agreement with the bending frequency for the \tilde{X}^1A_1 state of the C_{2v} isomer estimated from the pure rotational spectrum.c