MICROWAVE SPECTRA AND STRUCTURES OF $H_4C_2\cdots AgCl$ AND $H_4C_2\cdots CuCl$

<u>N. R. WALKER</u>, S. L. STEPHENS, V. A. MIKHAILOV AND A. C. LEGON, *School of Chemistry, University of Bristol, Bristol, BS8 1TS, U.K.*.

A Balle-Flygare FT-MW spectrometer coupled to a laser ablation source has been used to measure the pure rotational spectra of $H_4C_2\cdots AgCl$ and $H_4C_2\cdots CuCl$. Both molecules are generated via laser ablation (532 nm) of a metal rod in the presence of CCl₄, C_2H_4 and argon and are stabilized by supersonic expansion. Rotational constants (A_0 , B_0 , C_0) and the centrifugal distortion constant, D_J , have been measured for six isotopologues of $H_4C_2\cdots AgCl$ and five isotopologues of $H_4C_2\cdots CuCl$ with substitutions at the metal, chlorine and carbon atoms in each case. The spectrum of each molecule is consistent with a C_{2v} structure in which the metal atom interacts with the π -orbital on ethene. The measured rotational constants allow determination of the length of the bond between the metal and chlorine atoms, r_{MCl} , and the distance between the metal atom and the centre of the ethene double bond, r_{MEt} . Nuclear quadrupole coupling constants have been determined for the chlorine atom in each molecule and also for copper in $H_4C_2\cdots CuCl$.