THE VISIBLE SPECTRUM OF ZIRCONIUM DIOXIDE, ZrO₂

ANH LE AND <u>TIMOTHY C. STEIMLE</u>, Department of Chemistry and Biochemistry, Arizona State University, Tempe, AZ 85287; VARUN GUPTA AND JOHN P. MAIER, Department of Chemistry, University of Basel, Basel, Switzerland.

Zirconia (ZrO₂) is an important material with applications in microelectronics, catalysis, and ceramics. Previously the photoelectron spectrum^{*a*,*b*} of the ZrO₂ anion and the pure rotation spectrum of the neutral^{*c*} have been recorded and analyzed. Here we present the first observation of the visible spectrum of ZrO₂ via laser induced fluorescence (LIF) and resonance enhanced multi-photon ionization (REMPI). The LIF spectrum was recorded between 17000-18900 cm⁻¹ at a resolution of 0.2 cm⁻¹ using pulsed dye laser excitation and tentatively analyzed to give harmonic vibrational parameters ω_1, ω_2 , and ω_3 for the \tilde{A}^1B_2 state of 495(1) cm⁻¹, 150(3) cm⁻¹ and 1045(4) cm⁻¹, respectively. Dispersed fluorescence spectra of thirteen bands were recorded and analyzed to give harmonic vibrational parameters $\omega_1, \omega_2, \alpha_1, \omega_3$ for the X^1A_1 state of 898 (1) cm⁻¹, 287(3) cm⁻¹ and 808(4) cm⁻¹, respectively. The radiative lifetimes of numerous bands have been measured and analyzed. Franck-Condon factors were calculated and used to model the REMPI and excitation spectra. A comparison with TiO₂ is made^{*d*}.

^aO.C. Thomas; S. Xu; T.P. Lippa; and K.H. Bowen Journal of Cluster Science 10(4) 525, 1999.

^bW.Zheng; K.H. Bowen JPCA. **109** 11521, 2005

^cD.J. Brugh; R.D. Suenram JCP 11(8), 3526,1999

^dX. Zhuang; A. Le; T.C. Steimle; R. Magarajan; V. Gupta; and J.P. Maier PCCP 12 15018, 2010