Zirconia (ZrO$_2$) is an important material with applications in microelectronics, catalysis, and ceramics. Previously the photoelectron spectruma,b of the ZrO$_2$ anion and the pure rotation spectrum of the neutralc have been recorded and analyzed. Here we present the first observation of the visible spectrum of ZrO$_2$ via laser induced fluorescence (LIF) and resonance enhanced multi-photon ionization (REMPI). The LIF spectrum was recorded between 17000-18900 cm$^{-1}$ at a resolution of 0.2 cm$^{-1}$ using pulsed dye laser excitation and tentatively analyzed to give harmonic vibrational parameters ω_1, ω_2, and ω_3 for the \tilde{A}^3B_2 state of 495(1) cm$^{-1}$, 150(3) cm$^{-1}$ and 1045(4) cm$^{-1}$, respectively. Dispersed fluorescence spectra of thirteen bands were recorded and analyzed to give harmonic vibrational parameters ω_1, ω_2, and ω_3 for the X^1A_1 state of 898 (1) cm$^{-1}$, 287(3) cm$^{-1}$ and 808(4) cm$^{-1}$, respectively. The radiative lifetimes of numerous bands have been measured and analyzed. Franck-Condon factors were calculated and used to model the REMPI and excitation spectra. A comparison with TiO$_2$ is maded.

bW.Zheng; K.H. Bowen JPCA. 109 11521, 2005
cD.J. Brugh; R.D. Suenram JCP 11(8), 3526,1999
dX. Zhuang; A. Le; T.C. Steimle; R. Magarajan; V. Gupta; and J.P. Maier PCCP 12 15018, 2010