FTIR ISOTOPIC AND DFT STUDIES OF SiC $_5$ TRAPPED IN SOLID Ar

<u>T. H. LE</u>, and W. R. M. GRAHAM, *Molecular Physics Laboratory, Department of Physics and Astronomy, Texas Christian University, Fort Worth, TX 76129.*

We report here the first results from a Fourier transform infr ared (FTIR) and density functional theory (DFT) study on SiC₅. This species has been produced by ablating a rod made of silicon and graphite powder with a Nd:YAG laser and trapping the products in solid Ar at ~ 15 K. In the only previous observation of SiC₅, McCarthy *et al.* reported the microwave rotational spectrum^{*a*}. In the present work, extensive FTIR measurements of vibrational frequencies and isotopic shifts from ¹³C enrichment and the naturally occurring ^{29,30}Si isotopes have been compared with the predictions of density functional theory calculations at the B3LYP/cc-pVDZ level. The excellent agreement between experiment and theory has enabled the assignment of the $\nu_4(\sigma)$ fundamental of linear SiC₅ at 936.9 ± 0.2 cm⁻¹. This information may help in identifying SiC₅ in circumstellar and interstellar environments.

^aM.C. McCarthy, A.J. Apponi, C.A. Gottlieb, and P. Thaddeus, Astrophys. J. 538, 766 (2000)