THE JET-COOLED HIGH RESOLUTION $\tilde{A}^2 E^{\prime\prime}\mathchar`-\mathchar`Z^2 A_2^\prime$ VIBRONIC BANDS OF ${\rm NO}_3$

<u>MING-WEI CHEN</u>, TERRANCE J. CODD, GABRIEL M. P. JUST^a, and TERRY A. MILLER, *Laser Spectroscopy Facility, Department of Chemistry, The Ohio State University, 120 W. 18th Avenue, Columbus, Ohio* 43210.

The 0_0^0 , 4_0^1 , 4_0^2 and 2_0^1 vibronic bands of the \tilde{A} state NO₃ absorption spectrum has been successfully observed with our high-resolution, jet-cooled cavity ring-down apparatus. Ground state combination differences^{bc} are used to analyze all four vibronic bands. Rotational transitions of the 4_0^1 band (parallel band) band are assigned including some levels that appear to be doubled. The 4_0^2 band verifies the existence of anomalous doublets in both the 4_0^1 and 4_0^2 bands. The 2_0^1 band is a perpendicular band which has a different band type. Preliminary assignments of this band are utilized for the comprehensive understanding of the structure of NO₃ in the \tilde{A} state. Besides the ν_2 and ν_4 vibronic bands, the vibronically forbidden origin band (0_0^0 band) has also been recorded. The weakly observed \tilde{A} - \tilde{X} origin band structure appears to be different from either the parallel or perpendicular band type and is likely a magnetic dipole transition.

^a present address: Lawrence Berkeley National Laboratory, Berkeley, CA 94720

^bK. Kawaguchi, E. Hirota, T. Ishiwata, and I. Tanaka, J. Chem. Phys., <u>93</u>, 951 (1990)

^cK. Kawaguchi, T. Ishiwata, E. Hirota, and I. Tanaka, Chem. Phys., 231, 193 (1998)