SPECTROSCOPY OF THORIUM MONOXIDE, ThO; $E(O^+), F(O^+), -X^1\Sigma^+$ BANDS

<u>FANG WANG</u> AND TIMOTHY C. STEIMLE, Department of Chemistry and Biochemistry, Arizona State University, Tempe, AZ 85287; MICHAEL HEAVEN, Department of Chemistry, Emory University, Atlanta, GA 30322.

Thorium monoxide, ThO, has recently attracted interest as a possible venue for the determination of the electric dipole moment of the electron, d_e^a . Here we report on the results of an optical Stark study of the $E(O^+)-X^1\Sigma^+(1,0)$ band and the field-free study of the $F(O^+)-X^1\Sigma^+(0,0)$ band^b. A supersonic molecular beam of ThO was generated using a laser ablation technique and probed using laser excitation spectroscopy. The determined values for the permanent electric dipole moments, μ_{el} , for the $E(O^+)(v = 1)$ and $X^1\Sigma^+(v = 0)$ vibronic states were determined to be 3.534 ± 0.010 D and 2.782 ± 0.012 D, respectively ^c. The dispersed laser induced fluorescence resulting from the excitation of the $E(O^+)-X^1\Sigma^+(1,0)$ and $F(O^+)-X^1\Sigma^+(0,0)$ bands have been recorded and the results are compared to Franck-Condon predictions. The radiative lifetimes for the $E(O^+)-X^1\Sigma^+(1,0)$ band $F(O^+)-X^1\Sigma^+(0,0)$ bands were determined.

^aA. C. Vutha, W. C. Campbell, Y. V. Gurevich, N. R. Hutzler, M. Parsons, D. Patterson, E. Petrik, B. Spaun, J. M. Doyle, G. Gabrielse, and D. DeMille, J. Phys. B: At., Mol. Opt. Phys., 43 074007/1 2010.

^bG. Edvinsson and A. Lagerqvist, *Physica Scripta*, **32** 602 1985.

^cF. Wang, T. C. Steimle and M.C. Heaven, J. Chem. Phys., 134 031102 2011.