FOURIER TRANSFORM MICROWAVE SPECTRUM OF THE FeCN RADICAL ($X^4\Delta_i$) AND CONFIRMATION OF THE GROUND ELECTRONIC STATE

<u>D. T. HALFEN</u>, Department of Chemistry, Department of Astronomy, and Steward Observatory, University of Arizona, Tucson, AZ, 85721; M. A. FLORY, CNA, Frankfort, KY; B. J. HARRIS, and L. M. ZIURYS, Department of Chemistry, Department of Astronomy, and Steward Observatory, University of Arizona, Tucson, AZ, 85721.

The pure rotational spectrum of the FeCN radical $(X^4 \Delta_i)$ has been measured using Fourier transform microwave (FTMW) techniques in the 4 - 40 GHz frequency range and a laser ablation source. The species was produced using Discharge Assisted Laser Ablation Spectroscopy (DALAS) in a supersonic jet expansion of iron vapor and (CN)₂, diluted in argon carrier gas. The fundamental rotational transition, $J = 9/2 \rightarrow 7/2$ ($\Omega = 7/2$), was recorded near 36 GHz. Three hyperfine transitions, due to the nitrogen nuclear spin of I = 1, were observed in the spectrum. These data were combined with the previous millimeter/submillimeter measurements of FeCN in a global fit and nitrogen hyperfine constants were determined. These measurements confirm that the ground state of FeCN is ${}^4\Delta_i$, as suggested by previous millimeter/submillimeter measurements of Flory & Ziurys. Theoretical calculations have predicted that the ground state of this radical is ${}^6\Delta_i$. In a ${}^6\Delta_i$ state, the J = 9/2 $\rightarrow 7/2$ transition does not exist in the lowest energy ladder ($\Omega = 9/2$).