ANHARMONIC RESONANCES AMONG LOW-LYING VIBRATIONAL LEVELS OF METHYL ISO-CYANIDE $(\mathrm{H}_3\mathrm{CNC})$

<u>P. PRACNA</u>, J. URBAN, J. Heyrovský Institute of Physical Chemistry, v.v.i., Academy of Sciences of the Czech Republic, 18223 Prague 8, Czech Republic; Š. URBAN, J. VARGA, Department of Analytical Chemistry, Institute of Chemical Technology, 16628 Prague 6, Czech Republic; V.-M. HORNEMAN, Department of Physical Sciences, University of Oulu, Linnanmaa, FIN-90570 Oulu, Finland.

Vibrational levels up to 1000 cm^{-1} of H₃C-N≡C are currently studied in FTIR spectra together with rotational transitions within these levels. This investigation comprises the low-lying excited vibrational levels of the CNC doubly degenerate bending vibration $v_8 = 1^{\pm 1}$ (267.3 cm⁻¹), $v_8 = 2^{0,\pm 2}$ (524.6 cm⁻¹(A), 545.3 cm⁻¹(E)), and $v_8 = 3^{\pm 1,\pm 3}$ (792.5 cm⁻¹(A1+A2), 833.9 cm⁻¹(E)), respectively, and the next higher fundamental level of the C-N valence vibration $v_4 = 1$ (945 cm⁻¹). All these vibrational levels exhibit cubic and quartic anharmonic resonances localized to moderate values of the rotational quantum number $K \leq 10$. Therefore the system of rovibrational levels has to be treated as a global polyad in order to describe all the available data quantitatively. The ground state constants have been improved considerably by extending the assignments to higher J/K rotational states both in the purely rotational spectra recorded in the ground vibrational level and in the ground state combination differences generated from the wavenumbers assigned in the fundamental ν_4 band. Similarities and differences with respect to isoelectronic molecules CH₃CN and CH₃CCH are discussed.