INFRARED SPECTRA OF OCS-C₆H₆, OCS-C₆H₆-HE AND OCS-C₆H₆-NE VAN DER WAALS COMPLEXES

M. DEHGHANY, J. NOROOZ OLIAEE, MAHIN AFSHARI, N. MOAZZEN-AHMADI, Department of Physics and Astronomy, University of Calgary, 2500 University Dr., N.W., Calgary, Alberta T2N 1N4, Canada; A.R.W. McKELLAR, Steacie Institute for Molecular Sciences, National Research Council of Canada, Ottawa, Ontario, K1A 0R6, Canada.

The infrared spectrum of weakly-bound OCS- C_6H_6 is studied in the region of the ν_1 fundamental band of OCS (~2060 cm⁻¹) using a tunable diode laser spectrometer to probe a pulsed supersonic jet expansion. A very simple band is observed, corresponding to a parallel transition of a symmetric top. It is shifted by -11.1 cm⁻¹ with respect to the free OCS monomer. The resulting structure has OCS located along the benzene C_6 symmetry axis in an S-bonded configuration with a center of mass separation of 4.42 Å, in good agreement with previous microwave spectra.^{*a*} The isotopomers OCS- $^{13}C^{12}C_5H_6$ and OC $^{34}S-C_6H_6$ are also observed. Similar bands are observed for the OCS- C_6H_6 -He and OCS- C_6H_6 -Ne trimers, whose structure is obtained by adding an on-axis rare gas atom to the other side of the benzene. However, the analogous band for OCS- C_6H_6 -Ar was not detected, raising the possibility that the stable form of this trimer may not have the same symmetrical structure.

^aU. Dahmen, H. Dreizler, and W. Stahl, Ber. Bunsenges. Phys. Chem. 99, 434 (1995).