INFRARED SPECTRA OF $(CO_2)_2$ -OCS COMPLEX: INFRARED OBSERVATION OF TWO DISTINCT BARREL-SHAPED ISOMERS

J. NOROOZ OLIAEE, M. DEHGHANY, F. MIVEHVAR, <u>N. MOAZZEN-AHMADI</u>, Department of Physics and Astronomy, University of Calgary, Calgary, AB T2N 1N4, Canada; A.R.W. MCKELLAR, Steacie Institute for Molecular Sciences, National Research Council of Canada, Ottawa, ON K1A 0R6, Canada.

Spectra of $(CO_2)_2$ -OCS complex in the region of the OCS ν_1 fundamental (~2062 cm⁻¹) are observed using a tunable diode laser to probe a pulsed supersonic slit jet expansion. A previous microwave study of the complex by Peebles and Kuczkowskia^{*a*} gave a distorted triangular cylinder. The geometerical disposition of the three dimer faces of this trimer are quite similar to the slipped CO₂ dimer, the lowest energy form of OCS-CO₂ (isomer a), also observed and analyzed in the microwave region, ^{*b*} and the higher energy form of OCS-CO₂ (isomer b), first observed by our group in the infrared region. ^{*c*}

Here we report the observation and analysis of two infrared bands, corresponding to two distinct isomers of the $(CO_2)_2$ -OCS complex. A band around 2058.8 cm⁻¹ was assigned to isomer I, which is the same as that studied previously by microwave spectroscopy. A second band around 2051.7 cm⁻¹ was assigned to a higher energy isomer of the complex, isomer II, has not been observed previously, but expected on the basis of *ab initio* calculations. ^d Approximate structural parameters for this new isomer were obtained by means of isotopic substitution. In contrast to isomer I, the geometerical disposition of the faces containing OCS and CO₂ in isomer II are similar to isomer b of the OCS-CO₂ complex.

^aS.A. Peebles and R.L. Kuczkowski, J. Chem. Phys. 109, 5277 (1998).

^bS. E. Novick, R. D. Suenram, and F. J. Lovas, J. Chem. Phys. 88, 687 (1988).

^cM. Dehghany, J. Nooroz Oliaee, M. Afshari, N. Moazzen-Ahmadi, and A.R.W. McKellar, J. Chem. Phys. 130, 224310 (2009).

^dH. Valdés and J. A. Sordo, Int. J. Comput. Chem. 23, 444 (2002).